
Our Project Grammar

Program ::== Block $
Block ::== { StatementList }

StatementList ::== Statement StatementList
::== ε

Statement ::== PrintStatement
::== AssignmentStatement
::== VarDecl
::== WhileStatement
::== IfStatement
::== Block

PrintStatement ::== print (Expr)
AssignmentStatement ::== Id = Expr
VarDecl ::== type Id
WhileStatement ::== while BooleanExpr Block
IfStatement ::== if BooleanExpr Block

Expr ::== IntExpr
::== StringExpr
::== BooleanExpr
::== Id

IntExpr ::== digit intop Expr
::== digit

StringExpr ::== " CharList "
BooleanExpr ::== (Expr boolop Expr)

::== boolval
Id ::== char
CharList ::== char CharList

::== space CharList
::== ε

Curly braces
denote new scope.

= is assignment.

type ::== int | string | boolean
char ::== a | b | c ... z
space ::== the space character
digit ::== 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

boolop ::== == | !=

boolval ::== false | true
intop ::== +

== is test for equality.

Comments are bounded by /* and */ and ignored by the lexer.

